References

Dakternieks, D., Dyson, G., Jurkschat, K., Tozer, R. \& Tiekink, E. R. T. (1993). J. Organomet. Chem. 458, 29-38.

Daly, J. J. (1967). J. Chem. Soc. A, pp. 1708-1712.
Flack, H. D. \& Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ng, S. W. \& Holeček, J. (1998). Acta Cryst. C54, 750-752.
Ng, S. W., Kumar Das, V. G., IIossain, M. B., Goerlitz, F. \& van der Helm, D. (1990). J. Organomet. Chem. 390, 19-28.
Ng, S. W., Kumar Das, V. G., Skelton, B. W. \& White, A. H. (1992). J. Organomet. Chem. 430. 139-148.

Ng, S. W., Kumar Das, V. G. \& Tiekink, E. R. T. (1991). J. Organomet. Chem. 403, 111-117.
Oliver, J. D., Barnett, B. L. \& Strickland, L. C. (1984). Acta Cryst. B40, 377-381.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Skrzypczak-Jankun, E., Smith, D. A. \& Maluszynska, H. (1994). Acta Cryst. C50, 1097-1099.
Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.
Tiekink, E. R. T. (1994). Trends Organomet. Chem. 2, 71-116.

Comment

The title complex, $\left[\mathrm{ZrCl}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]_{2} \mathrm{O}$, (I), was obtained quite unexpectedly when the reaction product of $\mathrm{Na}\left[\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OMe}\right]$ and $\mathrm{C}_{7} \mathrm{H}_{9}$ (spiro-cyclo-pentadienyl-[1,1']-cyclopropane) was reacted with ZrCl_{4} in $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ (THF). The use of carefully dried chemicals under strictly purified N_{2} and yields of (I) up to 20% (reference: ZrCl_{4}) make it unlikely that impurities of $\mathrm{H}_{2} \mathrm{O}$ have been the only source of the metal-bridging O atoms. Similarly, the reaction of ZrCl_{4} with neat 1,2 -dimethoxyethane (dme) under argon was shown to afford the related complex $\left[\mathrm{ZrCl}_{3}(\mathrm{dme})_{2}\right]_{2} \mathrm{O}$, (II) (BabaianKibala et al., 1991). However, the comparable reaction of ZrCl_{4} with neat THF has not yet been similarly investigated.

The crystal structure of (I) (Fig. 1) involves an uncharged dinuclear molecule, the only non-trivial symmetry element of which is a C_{2} axis passing through

Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
the bridging oxygen and bisecting inter alia perpendicularly the line $\mathrm{O}_{\mathrm{eq}} \cdots \mathrm{O}_{\mathrm{eq}}^{\mathrm{i}}$ [symmetry code: (i) $1-x, y$, $\frac{1}{2}-z$]. Hence, although the molecule is axial chiral [the point symmetry of (I) is C_{2}], the achiral space group implies that the crystal consists of a racemic mixture of molecules.

A perspective view of (I) (involving the THF O atoms only) along the $\mathrm{Zr} \cdots \mathrm{Zr}^{\mathrm{i}}$ direction is shown in Fig. 2. The two sets of equatorial ligands (i.e. Cl and THF) adopt neither an eclipsed nor an ideally staggered conformation, the torsion angle of the $\mathrm{O}_{\mathrm{eq}}-\mathrm{Zr}-\mathrm{Zr}^{\mathrm{i}}-\mathrm{O}_{\mathrm{eq}}^{\mathrm{i}}$ fragment being $115.3(1)^{\circ}$ (Fig. 2). Corresponding dihedral angles are $-72.8(1)^{\circ}$ from Cll to $\mathrm{Cll}^{\mathrm{i}},-54.0(1)^{\circ}$ from Cl 2 to $\mathrm{Cl} 2^{\mathrm{i}}$ and $120.1(1)^{\circ}$ from Cl 3 to Cl^{i}. Although the $\mathrm{Zr}-\mu$-O distances in (I) $[1.9212(10) \AA]$ and (II) $[1.914$ (1) \AA] are very similar, compound (II) was shown to adopt a centrosymmetric eclipsed conformation (point group $C_{2 h}$). On the other hand, in (I), (II) and $\left[\mathrm{ZrCl}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right]_{2}\left(1,2-\mathrm{O}_{2}-c-\mathrm{C}_{6} \mathrm{H}_{10}\right)$ (Galeffi et al., 1990), (III), each Zr atom carries one axial and one equatorial ether O atom. In accordance with an earlier consideration (Galeffi et al., 1990), the $\mathrm{Zr}-\mathrm{O}_{\mathrm{ax}}$ distances in (I), (II) and (III) are slightly longer than the corresponding $\mathrm{Zr}-\mathrm{O}_{\mathrm{eq}}$ distances (Table 2). Owing to intramolecular steric congestion, most of the ligand $-\mathrm{Zr}-$ ligand angles in (I), (II) and (III) deviate from 90 and 180°. Apparently, the rather unexpected molecular conformation of (I) allows the most favourable packing of the molecules in the crystal (Fig. 3). A comparative

Fig. 2. The staggered conformation perspective viewed from Zr to Zr^{i} without the C atoms of the tetrahydrofuran ligands. [Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.]
molecular modelling/force field calculation of (I) and (II) might provide further explanations for the structural differences of these two related compounds.

Fig. 3. Packing diagram viewed down the y axis.

Experimental

To a suspension of $\mathrm{ZrCl}_{4} \cdot 2$ THF in THF was added one equivalent each of $\left[\mathrm{Na}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)\right]$ and cyclopentadienylspiro[$\left.1,1^{\prime}\right]$ cyclopropane $\left(\mathrm{C}_{7} \mathrm{H}_{9}\right)$. The mixture was stirred at ambient temperature for 12 h . The volatile components were removed and a large volume of hexane was added to the dry residue. The yellow hexane phase was separated from the heavier dark oil, concentrated slightly and cooled to 273 K whereupon colourless light-yellow crystalline needles suitable for the crystallographic study were isolated. Elemental analysis, found: C $28.1, \mathrm{H} 4.6 \%$; calculated for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{Cl}_{6} \mathrm{O}_{5} \mathrm{Zr}_{2}$: C 27.5, H 4.6\%.

Crystal data
$\left[\mathrm{Zr}_{2} \mathrm{Cl}_{6} \mathrm{O}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{4}\right]$
$M_{r}=699.56$
Monoclinic
C_{2} / c
$a=15.689$ (6) \AA
$b=11.025$ (6) \AA
$c=17.641$ (9) \AA
$\beta=113.69(7)^{\circ}$
$V=2794(2) \AA^{3}$
$Z=4$
$D_{i}=1.663 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10.14-12.51^{\circ}$
$\mu=1.342 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle
$0.35 \times 0.20 \times 0.17 \mathrm{~mm}$
Colourless

Data collection
Syntex $P 2_{1}$ diffractometer $\omega-2 \theta$ scans
Absorption correction: none
8427 measured reflections 3242 independent reflections 2808 reflections with

$$
I>4 \sigma(I)
$$

$R_{\mathrm{int}}=0.053$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.116$
$S=1.241$
3242 reflections
133 parameters
H -atom parameters
constrained
$\theta_{\text {max }}=27.56^{\circ}$
$h=-20 \rightarrow 14$
$k=-14 \rightarrow 12$
$l=-22 \rightarrow 22$
3 standard reflections every 100 reflections intensity decay: none

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0601 P)^{2}\right. \\
\quad+1.0143 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=-0.001 \\
\Delta \rho_{\max }=0.58 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-1.08 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: none } \\
\text { Scattering factors from } \\
\text { International Tables for } \\
\text { Crystallography (Vol. C) }
\end{gathered}
$$

Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993a).

JG thanks the Friedrich-Ebert-Stiftung (Bonn, Germany) for a scholarship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1009). Services for accessing these data are described at the back of the journal.

References

Babaian-Kibala, E., Cotton, F. A. \& Kibala, P. A. (1991). Acta Cryst. C47, 1305-1307.
Galeffi, B., Simard, M. \& Wuest, J. D. (1990). Inorg. Chem. 29, 955958.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993a). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993b). SHELXTL-Plus. Release 4.2I/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} \alpha^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Zr	0.36911 (2)	0.34704 (2)	0.22495 (2)	0.04290 (13)
ClI	0.33405 (8)	0.16883 (8)	0.13446 (6)	0.0648 (2)
Cl 2	0.37778 (8)	0.54499 (8)	0.29089 (6)	0.0694 (3)
Cl 3	0.37036 (8)	0.23894 (9)	0.34475 (5)	0.0679 (3)
O	1/2	0.3391 (3)	1/4	0.0582 (8)
Ol	0.3464 (2)	0.4559 (2)	0.11102 (13)	0.0548 (5)
O2	0.2110 (2)	0.3714 (3)	0.1764 (2)	$0.0600(6)$
C 1	0.3846 (3)	0.4195 (4)	0.0512 (2)	0.0630 (9)
C2	0.3866 (4)	0.5315 (5)	0.0054 (3)	0.089 (2)
C3	0.3144 (6)	0.6105 (6)	0.0131 (4)	0.125 (3)
C4	0.3109 (5)	0.5781 (5)	0.0910 (3)	$0.107(2)$
C5	0.1605 (3)	0.4046 (5)	0.2271 (3)	0.0804 (12)
C6	0.0598 (4)	0.3944 (7)	0.1726 (5)	0.108 (2)
C7	0.0555 (4)	0.3818 (9)	0.0895 (4)	0.126 (3)
C8	0.1420 (4)	0.3377 (7)	0.0954 (3)	0.098 (2)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Zr}-\mathrm{O}$	$1.9212(10)$	$\mathrm{Zr}-\mathrm{Cl} 3$	$2.4194(13)$
$\mathrm{Zr}-\mathrm{Ol}$	$2.243(2)$	$\mathrm{Zr}-\mathrm{Cl1}$	$2.4506(13)$
$\mathrm{Zr}-\mathrm{O} 2$	$2.292(3)$	$\mathrm{Zr}-\mathrm{Cl} 2$	$2.4510(14)$
$\mathrm{O}-\mathrm{Zr}-\mathrm{O} 1$	$90.05(11)$	$\mathrm{O} 2-\mathrm{Zr}-\mathrm{Cl} 1$	$85.68(8)$
$\mathrm{O}-\mathrm{Zr}-\mathrm{O} 2$	$171.03(8)$	$\mathrm{Cl} 3-\mathrm{Zr}-\mathrm{Cl1}$	$95.45(5)$
$\mathrm{O}-\mathrm{Zr}-\mathrm{O} 2$	$81.02(11)$	$\mathrm{O}-\mathrm{Zr}-\mathrm{Cl} 2$	$94.66(10)$
$\mathrm{O}-\mathrm{Zr}-\mathrm{Cl} 3$	$98.27(9)$	$\mathrm{OI}-\mathrm{Zr}-\mathrm{Cl} 2$	$84.69(7)$
$\mathrm{O}-\mathrm{Zr}-\mathrm{Cl} 3$	$171.44(7)$	$\mathrm{O} 2-\mathrm{Zr}-\mathrm{Cl} 2$	$85.32(8)$
$\mathrm{O} 2-\mathrm{Zr}-\mathrm{Cl} 3$	$90.69(9)$	$\mathrm{Cl} 3-\mathrm{Zr}-\mathrm{Cl} 2$	$92.56(5)$
$\mathrm{O}-\mathrm{Zr}-\mathrm{Cll}$	$93.01(10)$	$\mathrm{ClI}-\mathrm{Zr}-\mathrm{Cl} 2$	$168.00(4)$
$\mathrm{OI}-\mathrm{Zr}-\mathrm{ClI}$	$86.09(8)$	$\mathrm{Zr}-\mathrm{O}-\mathrm{Zr}$	$174.8(2)$

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.
H atoms were fixed at ideal positions with $d(\mathrm{C}-\mathrm{H})=0.97 \AA$ and with a common isotropic displacement parameter ($U_{\mathrm{iso}}=$ $0.15 \AA^{2}$). All crystallographic calculations were carried using SHELXL93 (Sheldrick, 1993a) and SHELXTL-Plus (Sheldrick, 1993b). The largest residue peak ($1.08 \mathrm{e} \AA^{-3}$) lay close to the heavy Zr atom in the final cycle of refinement. The $\mathrm{C} 7-\mathrm{C} 8$ distance is clearly shorter than the normal $\mathrm{C} s p^{3}-\mathrm{C} s p^{3}$ bond length; this may be due to the strong thermal motion of the C atoms in the THF molecule.

Acta Cryst. (1999). C55, 1451-1453

[N, N^{\prime}-Bis(5-methoxysalicylidene)-1,2-diphenyl-1,2-ethenediamine]oxovanadium(IV) \dagger

Gakuse Hoshina, Shigeru Ohba and Masanobu Tsuchimoto

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan. E-mail: ohba@chem.keio.ac.jp
(Received 23 October 1998: accepted I0 May 1999)

Abstract

The title complex, $\left[\mathrm{VO}\left(\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\right]$, adopts a monomeric structure in the crystals, which are red due to the charge-transfer band from the conjugated π-system of the tetradentate Schiff base ligand. The geometry around the V^{IV} atom is distorted square pyramidal. The $\mathrm{V}=0$ distance is 1.588 (3) \AA, and the V atom is displaced by 0.57 (1) \AA from the $\mathrm{N}_{2} \mathrm{O}_{2}$ coordination plane towards the apical oxo ligand.

Comment

Upon heating at 483 K , the green powder of [VO(5-MeOsal-meso-stien)] [$\mathrm{H}_{2}(5-\mathrm{MeOsal}$-meso-stien)
\dagger Alternative name: $\left\{4,4^{\prime}\right.$-dimethoxy-2, ${ }^{\prime}$-[1,2-diphenylethene-1,2-diylbis(nitrilomethylidyne)]diphenolato- $O, N, N^{\prime}, O^{\prime}$ \}oxovanadium(IV).

