References

- Dakternieks, D., Dyson, G., Jurkschat, K., Tozer, R. & Tiekink, E. R. T. (1993). J. Organomet. Chem. 458, 29–38.
- Daly, J. J. (1967). J. Chem. Soc. A, pp. 1708-1712.
- Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Ng, S. W. & Holeček, J. (1998). Acta Cryst. C54, 750-752.
- Ng, S. W., Kumar Das, V. G., Hossain, M. B., Goerlitz, F. & van der Helm, D. (1990). J. Organomet. Chem. 390, 19–28.
- Ng, S. W., Kumar Das, V. G., Skelton, B. W. & White, A. H. (1992). J. Organomet. Chem. 430, 139–148.
- Ng, S. W., Kumar Das, V. G. & Tiekink, E. R. T. (1991). J. Organomet. Chem. 403, 111-117.
- Oliver, J. D., Barnett, B. L. & Strickland, L. C. (1984). Acta Cryst. B40, 377-381.
- Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Skrzypczak-Jankun, E., Smith, D. A. & Maluszynska, H. (1994). Acta Cryst. C50, 1097–1099.
- Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.
- Tiekink, E. R. T. (1994). Trends Organomet. Chem. 2, 71-116.

Comment

The title complex, $[ZrCl_3(C_4H_8O)_2]_2O$, (I), was obtained quite unexpectedly when the reaction product of Na[C₅H₄(CH₂)₂OMe] and C₇H₉ (spiro-cyclopentadienyl-[1,1']-cyclopropane) was reacted with ZrCl₄ in C₄H₈O (THF). The use of carefully dried chemicals under strictly purified N₂ and yields of (I) up to 20% (reference: ZrCl₄) make it unlikely that impurities of H₂O have been the only source of the metal-bridging O atoms. Similarly, the reaction of ZrCl₄ with neat 1,2-dimethoxyethane (dme) under argon was shown to afford the related complex [ZrCl₃(dme)₂]₂O, (II) (Babaian-Kibala *et al.*, 1991). However, the comparable reaction of ZrCl₄ with neat THF has not yet been similarly investigated.

The crystal structure of (I) (Fig. 1) involves an uncharged dinuclear molecule, the only non-trivial symmetry element of which is a C_2 axis passing through

Acta Cryst. (1999). C55, 1449-1451

μ-Oxo-bis[*mer*-trichlorobis(tetrahydrofuran-*O*)zirconium(IV)]

JINGWEN GUAN, ERIC SIEBEL AND R. DIETER FISCHER

Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D20146 Hamburg, Germany. E-mail: fischer@chemie.uni-hamburg.de

(Received 15 October 1998; accepted 3 June 1999)

Abstract

The crystal structure of the title compound, $[ZrCl_3-(C_4H_8O)_2]_2O$ or $[Zr_2Cl_6O(C_4H_8O)_4]$, (I), was solved at room temperature and compared with that of the earlier reported complex $[ZrCl_3(MeOCH_2CH_2OMe)_2]_2O$, (II). In both molecules, two equivalent quasi-octahedral fragments involving one axial (ax) and one equatorial (eq) ether oxygen share one bridging oxide functionality. However, the point symmetry of (I) is only C_2 , while that of (II) is C_{2h} . The dihedral angle of the O_{eq} —Zr— Zr^i — O_{eq}^i fragment of (I) [symmetry code: (i) 1 – x, y, $\frac{1}{2} - z$] is 115.3 (1)° [180.0° in (II)] and the Zr—O— Zr^i angle is 174.8 (2)° [180.0° in (II)].

Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

the bridging oxygen and bisecting *inter alia* perpendicularly the line $O_{eq} \cdots O_{eq}^{i}$ [symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$]. Hence, although the molecule is axial chiral [the point symmetry of (I) is C_2], the achiral space group implies that the crystal consists of a racemic mixture of molecules.

A perspective view of (I) (involving the THF O atoms only) along the $Zr \cdot \cdot Zr^{i}$ direction is shown in Fig. 2. The two sets of equatorial ligands (i.e. Cl and THF) adopt neither an eclipsed nor an ideally staggered conformation, the torsion angle of the O_{eq} —Zr—Zrⁱ— O_{eq}^{i} fragment being 115.3 (1)° (Fig. 2). Corresponding dihedral angles are $-72.8(1)^{\circ}$ from Cl1 to Cl1ⁱ, $-54.0(1)^{\circ}$ from Cl2 to Cl2ⁱ and 120.1 (1)° from Cl3 to Cl3ⁱ. Although the Zr_{μ} -O distances in (I) [1.9212 (10) Å] and (II) [1.914(1)Å] are very similar, compound (II) was shown to adopt a centrosymmetric eclipsed conformation (point group C_{2h}). On the other hand, in (I), (II) and $[ZrCl_3(C_4H_8O)_2]_2(1,2-O_2-c-C_6H_{10})$ (Galeffi *et al.*, 1990), (III), each Zr atom carries one axial and one equatorial ether O atom. In accordance with an earlier consideration (Galeffi et al., 1990), the Zr-Oax distances in (I), (II) and (III) are slightly longer than the corresponding Zr-O_{eq} distances (Table 2). Owing to intramolecular steric congestion, most of the ligand-Zrligand angles in (I), (II) and (III) deviate from 90 and 180°. Apparently, the rather unexpected molecular conformation of (I) allows the most favourable packing of the molecules in the crystal (Fig. 3). A comparative

Fig. 2. The staggered conformation perspective viewed from Zr to Zr^{i} without the C atoms of the tetrahydrofuran ligands. [Symmetry code: (i) 1 - x, y, $\frac{1}{2} - z$.]

molecular modelling/force field calculation of (I) and (II) might provide further explanations for the structural differences of these two related compounds.

Fig. 3. Packing diagram viewed down the y axis.

Experimental

To a suspension of $ZrCl_4 \cdot 2THF$ in THF was added one equivalent each of $[Na(C_5H_4CH_2CH_2OMe)]$ and cyclopentadienylspiro[1,1']cyclopropane (C₇H₉). The mixture was stirred at ambient temperature for 12 h. The volatile components were removed and a large volume of hexane was added to the dry residue. The yellow hexane phase was separated from the heavier dark oil, concentrated slightly and cooled to 273 K whereupon colourless light-yellow crystalline needles suitable for the crystallographic study were isolated. Elemental analysis, found: C 28.1, H 4.6%; calculated for $C_{16}H_{32}Cl_6O_5Zr_2$: C 27.5, H 4.6%.

Crystal data

 $[Zr_2Cl_6O(C_4H_8O)_4]$ Mo $K\alpha$ radiation $M_r = 699.56$ $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 Monoclinic reflections C_2/c $\theta = 10.14 - 12.51^{\circ}$ a = 15.689(6) Å $\mu = 1.342 \text{ mm}^$ b = 11.025 (6) Å T = 293 (2) Kc = 17.641(9) Å $\beta = 113.69(7)^{\circ}$ Needle $0.35 \times 0.20 \times 0.17 \text{ mm}$ $V = 2794 (2) \text{ Å}^3$ Colourless Z = 4 $D_x = 1.663 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Syntex $P2_1$ diffractometer $\omega - 2\theta$ scans Absorption correction: none 8427 measured reflections 3242 independent reflections 2808 reflections with $I > 4\sigma(I)$ $R_{int} = 0.053$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.116$ S = 1.2413242 reflections 133 parameters H-atom parameters constrained $w = 1/[\sigma^{2}(F_{\sigma}^{2}) + (0.0601P)^{2} + 1.0143P]$ where $P = (F_{\sigma}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = -0.001$ $\Delta\rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -1.08 \text{ e} \text{ Å}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

 $\theta_{\rm max} = 27.56^{\circ}$

 $h = -20 \rightarrow 14$

 $k = -14 \rightarrow 12$

 $l = -22 \rightarrow 22$

3 standard reflections

every 100 reflections

intensity decay: none

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j.$

	x	у	z	U_{eq}
Zr	0.36911(2)	0.34704 (2)	0.22495 (2)	0.04290 (13)
CII	0.33405 (8)	0.16883 (8)	0.13446 (6)	0.0648 (2)
C12	0.37778 (8)	0.54499 (8)	0.29089 (6)	0.0694 (3)
Cl3	0.37036(8)	0.23894 (9)	0.34475 (5)	0.0679(3)
0	1/2	0.3391 (3)	1/4	0.0582 (8)
01	0.3464 (2)	0.4559(2)	0.11102 (13)	0.0548 (5)
O2	0.2110(2)	0.3714 (3)	0.1764 (2)	0.0600 (6)
Cl	0.3846 (3)	0.4195 (4)	0.0512 (2)	0.0630 (9)
C2	0.3866 (4)	0.5315(5)	0.0054 (3)	0.089(2)
C3	0.3144 (6)	0.6105 (6)	0.0131 (4)	0.125(3)
C4	0.3109 (5)	0.5781 (5)	0.0910(3)	0.107(2)
C5	0.1605 (3)	0.4046(5)	0.2271 (3)	0.0804 (12)
C6	0.0598 (4)	0.3944 (7)	0.1726 (5)	0.108(2)
C7	0.0555 (4)	0.3818 (9)	0.0895 (4)	0.126(3)
C8	0.1420 (4)	0.3377 (7)	0.0954 (3)	0.098(2)

Table 2. Selected geometric parameters (Å, °)

Zr—O	1.9212 (10)	Zr—C13	2.4194 (13)
Zr—O1	2.243 (2)	Zr—CI1	2.4506 (13)
Zr—O2	2.292 (3)	Zr—Cl2	2.4510 (14)
0—Zr—O1	90.05 (11)	O2—Zr—C11	85.68 (8)
0—Zr—O2	171.03 (8)	Cl3—Zr—Cl1	95.45 (5)
01—Zr—02	81.02(11)	O-Zr-Cl2	94.66 (10)
O-Zr-Cl3	98.27 (9)	01—Zr—Cl2	84.69 (7)
Ol—Zr—Cl3	171.44(7)	O2-Zr-Cl2	85.32 (8)
O2—Zr—Cl3	90.69 (9)	Cl3—Zr—Cl2	92.56 (5)
0-Zr-C11	93.01 (10)	CI1—Zr—Cl2	168.00 (4)
01—Zr—C11	86.09 (8)	Zr—O—Zr	174.8 (2)
c			

Symmetry code: (i) $1 - x, y, \frac{1}{2} - z$.

H atoms were fixed at ideal positions with d(C-H) = 0.97 Å and with a common isotropic displacement parameter ($U_{iso} = 0.15$ Å²). All crystallographic calculations were carried using *SHELXL93* (Sheldrick, 1993*a*) and *SHELXTL-Plus* (Sheldrick, 1993*b*). The largest residue peak (1.08 e Å⁻³) lay close to the heavy Zr atom in the final cycle of refinement. The C7-C8 distance is clearly shorter than the normal Csp³-Csp³ bond length; this may be due to the strong thermal motion of the C atoms in the THF molecule. Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993*a*).

JG thanks the Friedrich-Ebert-Stiftung (Bonn, Germany) for a scholarship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1009). Services for accessing these data are described at the back of the journal.

References

- Babaian-Kibala, E., Cotton, F. A. & Kibala, P. A. (1991). Acta Cryst. C47, 1305–1307.
- Galeffi, B., Simard, M. & Wuest, J. D. (1990). Inorg. Chem. 29, 955-958.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993a). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993b). SHELXTL-Plus. Release 4.21/V. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 1451-1453

[*N*,*N*'-Bis(5-methoxysalicylidene)-1,2-diphenyl-1,2-ethenediamine]oxovanadium(IV)†

Gakuse Hoshina, Shigeru Ohba and Masanobu Tsuchimoto

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 23 October 1998; accepted 10 May 1999)

Abstract

The title complex, $[VO(C_{30}H_{24}N_2O_4)]$, adopts a monomeric structure in the crystals, which are red due to the charge-transfer band from the conjugated π -system of the tetradentate Schiff base ligand. The geometry around the V^{IV} atom is distorted square pyramidal. The V==O distance is 1.588 (3) Å, and the V atom is displaced by 0.57 (1) Å from the N₂O₂ coordination plane towards the apical oxo ligand.

Comment

Upon heating at 483 K, the green powder of [VO(5-MeOsal-meso-stien)] [H₂(5-MeOsal-meso-stien)]

[†] Alternative name: $\{4,4'\text{-dimethoxy-}2,2'\text{-}[1,2\text{-diphenylethene-}1,2\text{-diylbis(nitrilomethylidyne)}]diphenolato-<math>O,N,N',O'\}$ oxovanadium(IV).